Ownership of intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth).

Creative Commons licence

All material in this publication is licensed under a Creative Commons Attribution 4.0 International Licence except content supplied by third parties, logos and the Commonwealth Coat of Arms.

Inquiries about the licence and any use of this document should be emailed to copyright@awe.gov.au.

Cataloguing data

This publication (and any material sourced from it) should be attributed as: ABARES 2022, Australian Crop Report: June 2022, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, DOI: CC BY 4.0. https://doi.org/10.25814/04q1-sm04

ISSN 1447-8358

Internet

This publication is available at awe.gov.au/abares/research-topics/agricultural-outlook/australian-crop-report

Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES)

GPO Box 858 Canberra ACT 2601

Telephone 1800 900 090

Web awe.gov.au

The Australian Government acting through the Department of Agriculture, Water and the Environment, represented by the Australian Bureau of Agricultural and Resource Economics and Sciences, has exercised due care and skill in preparing and compiling the information and data in this publication. Notwithstanding, the Department of Agriculture, Water and the Environment, ABARES, its employees and advisers disclaim all liability, including liability for negligence and for any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying on any of the information or data in this publication to the maximum extent permitted by law.

The purpose of this publication is to provide a high level overview of domestic commodities for information only, it is not intended to be relied on as a comprehensive representation of Australia’s agricultural sector or used for commercial purposes. The Department of Agriculture, Water and the Environment, ABARES and its employees do not accept responsibility for the accuracy or completeness of the contents and disclaim all liability, including liability for negligence and for any loss, damage, injury, expense or cost incurred by any person directly or indirectly as a result of accessing, using or relying on any of the contents of this publication to the maximum extent permitted by law.

In the next issue:

2022–23 winter crop area and production forecasts updated

2022–23 summer crop area and production forecasts

Acknowledgements

This report was prepared by Cameron Van-Lane, Charley Xia, Charlie Qin, Emily Dahl and Harry Coë with the assistance of Sian Waterhouse and Katie Metz.
About the Australian Crop Report

The Australian Crop Report contains ABARES forecasts for the area, yield and production of Australia’s major winter and summer broadacre crops. Forecasts are made at the Australian state level.

The Australian Crop Report is released quarterly in March, June, September and December. The June edition contains ABARES first forecasts of Australian winter crop production at the state level for the next Australian financial year (July to June). It also contains updated estimates of previously released summer crop forecasts. The September edition contains ABARES first forecasts of Australian summer crop production at the state level for the current Australian financial year. It also contains updated estimates of previously released winter crop forecasts. The December and March editions contain updates to both winter and summer crop forecasts for that Australian financial year.

Underpinning the forecasts contained in the Australian Crop Report are ABARES assessments of both realised and forecast planting, growing and harvesting conditions in each major production region. This assessment would not be possible without the invaluable participation of a network of expert industry contacts who are confidentially consulted during the preparation of each edition of the Australian Crop Report.

Note on release schedule for 2022

Readers should note that the release schedule of the Australian Crop Report has changed in 2022. From March 2022 the Australian Crop Report will be released alongside the Agricultural Commodities Report. A full publication schedule for these two products is available on the ABARES webpage.
National overview

Key points

- National planting to winter crops in 2022–23 is forecast to be the second highest on record at 23.4 million hectares.
- Winter crop production in 2022–23 is forecast to reach the fourth highest on record at 50.9 million tonnes.
- Summer crops production in 2021–22 is estimated to reach a new national record of 5.5 million tonnes.

Seasonal conditions supportive of strong intentions to plant winter crops in 2022–23

The opening of the winter cropping season in 2022–23 has been very favourable in most cropping regions. This comes as total rainfall between February and April was above average in most cropping regions in eastern states and Western Australia, helping to support high soil moisture profiles for the planting of winter crops. Conditions in South Australia in early autumn have been less favourable than elsewhere, which constrained planting progress in most parts of the state in early May. Cool conditions and sufficient rainfall during May have helped most growers in Victoria, South Australia and Western Australia to realise their strong planting intentions.

However, heavy May rainfall in Queensland and large parts of New South Wales has caused waterlogging issues in some regions experiencing ongoing wet conditions. This has limited access to fields for some growers in early winter and is likely to prevent them from planting a full program if conditions in June remain wet.

According to the latest three-month rainfall outlook (June to August), issued by the Bureau of Meteorology on 26 May 2022, there is a very high chance that cropping regions in the eastern states and South Australia will exceed their median winter rainfall. Western Australian cropping regions are more likely to receive below average winter rainfall.

Favourable planting conditions are expected to drive area planted to winter crops in 2022–23 to reach 23.4 million hectares nationally, a slight fall from last year’s record levels. This fall is mostly driven by forecasts of lower areas in New South Wales and Queensland, which is expected to offset slight increases elsewhere. High prices of wheat and canola relative to other crops during planting are expected to drive a 1% increase in the national area planted to wheat, and a 12% increase in area planted to canola. These increases are forecast to come largely at the expense of plantings to barley in most states and chickpeas in Queensland and New South Wales.

Winter crop production is forecast to reach 50.9 million tonnes, the fourth highest on record. Yield prospects are forecast to be well above 10-year averages in New South Wales and Queensland and more modestly in other states. High levels of subsoil moisture at the beginning of June and the likelihood of above average winter rainfall in most states are expected to support crop prospects. These forecasts assume average seasonal conditions in spring because Bureau of Meteorology outlook for spring is not yet available.
High costs of fertilisers and chemicals have caused growers to economise on their use planting and establishing crops, with the majority of growers securing sufficient volumes earlier in the year. While the cost and availability of chemicals are expected to be less of a constraint to production prospects, there is some risk that a tighter than expected rationing of fertilisers on farms in spring could reduce yield potentials. However, this downside risk is expected to be limited by the scale and specialist operations of large farms producing the majority of production in Australia, and their tendencies to hold adequate fertiliser stocks to maximise their returns to deploying farm machineries.

Wheat production is forecast to increase 22% above 10-year averages to reach 30.3 million tonnes, the fourth largest on record. **Barley** production is forecast to reach 10.9 million tonnes, also the fourth largest on record. **Canola** production is forecast to increase 47% above 10-year averages to total 5.6 million tonnes, the second largest on record.

Summer crop production in 2021–22 estimated to reach a new record
Total summer crop production in 2021–22 is estimated to reach a new record of 5.5 million tonnes. This comes as well above average rainfall during autumn contributed to finishing off an excellent summer cropping season in Queensland and northern New South Wales. This was despite well above average rainfall between February and March, which led to flooding, weather damage, harvest delays, and the inundation and loss of some summer crops. The extent of damage was significant for some growers but was localised and did not have a major impact on national volumes. Ongoing wet conditions in May delayed crop harvests and contributed to some quality downgrades, especially for sorghum.

Production of **grain sorghum** is forecast to increase 83% to 2.7 million tonnes, supported by record average yields. Production of **cotton lint** is estimated to reach a new record of 1.3 million tonnes, supported by high yields and record planted area.
Crop forecasts by State

Queensland

Winter crop production is forecast to be 32% above the 10-year average to 2021–22 at 2.3 million tonnes in 2022–23. This forecast is a decrease of 17% from the near-record production last year. Exceptionally wet conditions across major production areas are expected to decrease planting area and yields, with higher livestock numbers further decreasing available land.

The persistence of a La Niña event through autumn 2022 has contributed to well above average rainfall in Queensland cropping regions in May—a critical planting period. However, the wet conditions have restricted field access, preventing the harvest of remaining summer crops and the planting of winter crops. In southern Queensland, it followed substantial rainfall in late summer, and growers will require several weeks of dry conditions before planting activities can resume. If further rainfall prevents field access throughout June, many growers may opt to fallow land until spring for the planting summer crops. In Central Queensland, the recent rainfall has provided a much-needed boost to soil moisture levels, following a relatively dry summer. Planting activity is likely to resume much sooner in Central Queensland as a result. The development of a negative Indian Ocean Dipole in the Indian Ocean is expected to result in above average rainfall across Queensland cropping regions throughout winter 2022.

High international wheat prices are expected to drive an increase in wheat area across Queensland cropping regions compared to 2021–22, especially in Central Queensland. The increased wheat area will largely come at the expense of area planted to chickpeas. Limited import demand from India, as well as a large stockpile of chickpeas remaining on-farm from last winter, has contributed to low chickpea prices. Moreover, the wet conditions favour the planting of winter cereal crops. Barley area is also forecast to decrease slightly compared to 2021–22. However, the higher yields of feed barley and a surge in barley prices in May will limit the amount of barley area shifted into wheat production. Following a high-yielding year in 2021–22, and the significant risk of conditions being too wet, yields are expected to decrease for all winter crops.

Summer crop production is forecast to increase 72% in 2021–22 to 2.5 million tonnes, the second highest production on record. Good availability of irrigation water and a favourable seasonal outlook increased the summer planting area, while above average rainfall across southern Queensland resulted in well above average yields, despite localised damage from flooding in February and March.

The summer cropping season began with one of the wettest November on record, providing above average soil moisture levels to support crops through the start of the season. Below average-to-average rainfall conditions were recorded through December and January, allowing the timely harvest of sorghum in southern Queensland in January and February. The crops harvested at this time produced remarkably high yields. However, the onset of heavy rainfall in late February prevented the harvest of a substantial portion of the mature crop.

In Central Queensland, conditions remained dry throughout much of the sorghum growing period, resulting in below average yields. Plentiful irrigation water prompted a large increase in irrigated cotton plantings. Dryland plantings also increased in response to high prices and a favourable rainfall outlook. Irrigated cotton yields were well above average in Central
Queensland but suffered slightly due to the wet conditions in southern Queensland. Rainfall in May has prevented field access, leaving many mature crops yet to be harvested.

Winter crop forecasts, Queensland, 2022–23

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>885</td>
<td>1.95</td>
<td>1,726</td>
<td>7</td>
<td>-5</td>
</tr>
<tr>
<td>Barley</td>
<td>133</td>
<td>2.40</td>
<td>319</td>
<td>-9</td>
<td>-18</td>
</tr>
<tr>
<td>Chickpeas</td>
<td>185</td>
<td>1.40</td>
<td>259</td>
<td>-37</td>
<td>-48</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted. Area based on planted crop that is harvested, fed off or failed. Percent changes are relative to last year.
Source: ABARES

Summer crop estimates, Queensland, 2021–22

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. Change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain sorghum</td>
<td>452</td>
<td>3.93</td>
<td>1,776</td>
<td>19</td>
<td>78</td>
</tr>
<tr>
<td>Cotton lint</td>
<td>214</td>
<td>1.97</td>
<td>422</td>
<td>105</td>
<td>90</td>
</tr>
<tr>
<td>Cottonseed</td>
<td>214</td>
<td>2.36</td>
<td>506</td>
<td>105</td>
<td>90</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted, except cotton which is based on area harvested. Area based on planted crop that is harvested, fed off or failed. Percent changes are relative to last year.
Source: ABARES

New South Wales

Winter crop production in New South Wales is forecast to reach 14.7 million tonnes in 2022–23. This forecast is 33% above the 10-year average to 2021–22 but 22% below the near-record production of last year. An excellent start to the winter cropping season in New South Wales has helped most growers to fully realise their strong planting intentions. High levels of soil moisture at the time of planting and the favourable winter rainfall outlook are also expected to support very high yield potentials.

Area planted to winter crops in New South Wales is forecast to be 6 million hectares, remaining 13% above the 10-year average to 2021–22 but falling by 2% compared to last year. This comes as autumn rainfall in most cropping regions reached above their 80th percentile of historical years, providing timely and solid conditions for the planting of winter crops. However, in some parts of central and northern New South Wales, heavy and ongoing rainfall during late autumn has limited access to some fields which has prevented growers from planting a full program. If waterlogging issues persist in these areas during June, then some of these fields will likely be left fallow over winter and planted to summer crops later in the year.

Excellent seasonal conditions have allowed growers to focus plantings to wheat and canola, driven by higher prices of these crops relative to others. Area planted to wheat is expected to reach just under 3.7 million hectares, a 1% fall from last year. This fall is mostly due to a greater focus in central and northern New South Wales towards planting canola and a likelihood of reduced areas in some parts due to heavily saturated soils. Area planted to canola is forecast to increase by 15% to 920,000 hectares, with this increase coming largely at the expense of area planted to barley and chickpeas.
Total summer crop production is estimated to increase by 73% in 2021–22 to 2.9 million tonnes, 46% above the 10-year average to 2020–21. Well above average autumn rainfall in northern New South Wales has finished off an excellent summer cropping season, resulting in forecasts of high crop yields including record high sorghum yields and well above average dryland cotton yields. This comes on top of significant increases to the area planted to summer crops earlier in the season, despite disruptive rainfall during the planting season which caused some crops to be resown. Similarly, localised flooding in northern New South Wales in March caused limited damage to summer crops. Ongoing wet conditions in most summer cropping regions during late autumn have remained disruptive to crop harvests and have caused quality downgrades of crops.

Winter crop forecasts, New South Wales, 2022–23

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. Change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>3,650</td>
<td>2.70</td>
<td>9,855</td>
<td>-1</td>
<td>-23</td>
</tr>
<tr>
<td>Barley</td>
<td>820</td>
<td>2.80</td>
<td>2,296</td>
<td>-9</td>
<td>-24</td>
</tr>
<tr>
<td>Canola</td>
<td>920</td>
<td>1.75</td>
<td>1,610</td>
<td>15</td>
<td>-11</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted. Area based on planted crop that is harvested, fed off or failed. Percent changes are relative to last year. Source: ABARES

Summer crop estimates, New South Wales, 2021–22

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. Change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain sorghum</td>
<td>170</td>
<td>5.60</td>
<td>952</td>
<td>31</td>
<td>93</td>
</tr>
<tr>
<td>Cotton lint</td>
<td>406</td>
<td>2.05</td>
<td>835</td>
<td>111</td>
<td>117</td>
</tr>
<tr>
<td>Cottonseed</td>
<td>406</td>
<td>2.46</td>
<td>1,000</td>
<td>111</td>
<td>117</td>
</tr>
<tr>
<td>Rice</td>
<td>61</td>
<td>10.25</td>
<td>625</td>
<td>35</td>
<td>39</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted, except cotton which is based on area harvested. Area based on planted crop that is harvested, fed off or failed. Percent changes are relative to last year. Source: ABARES

Victoria

In 2022–23, winter crop production in Victoria is forecast to be 8% above the 10-year average to 2021–22, reflecting the favourable seasonal conditions. This forecast is 13% below the third highest production on record of last year. Increased area planted to canola is expected, particularly in the Mallee where timely sowing was enabled by favourable autumn conditions. Increased area planted to wheat is also expected in response to international prices which have risen at a fast pace. Wheat and canola area is expected to increase at the expense of area planted to other crops including barley. Total winter crop area is expected to increase 1% relative to 2021–22 due to high prices incentivising planted area to expand into land previously allocated to pasture and other activities. Above average yields are currently expected due to soil moisture levels and the wet rainfall outlook over winter.

Seasonal conditions in Victoria were favourable for the start of the 2022–23 winter cropping season. Above average rainfall and soil moisture levels in April provided ideal conditions to start the winter cropping season. Drier conditions in May supported sowing to progress and planting of winter crops across Victoria is now largely complete. Upper layer soil moisture over May was
generally average across Victoria, supporting crop germination and establishment. The rainfall outlook over winter is currently favourable due to the negative Indian Ocean Dipole event which appears likely to develop.

Winter crop forecasts, Victoria, 2022–23

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. Change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>1,550</td>
<td>2.46</td>
<td>3,813</td>
<td>2</td>
<td>–9</td>
</tr>
<tr>
<td>Barley</td>
<td>790</td>
<td>2.65</td>
<td>2,094</td>
<td>–7</td>
<td>–17</td>
</tr>
<tr>
<td>Canola</td>
<td>550</td>
<td>1.80</td>
<td>990</td>
<td>12</td>
<td>–10</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted. Area based on planted crop that is harvested, fed off or failed. Percent changes are relative to last year.
Source: ABARES

South Australia

South Australian winter crop production is expected to fall by 7% in 2022–23 to 7.7 million tonnes but remaining 6% above the 10-year average to 2021–22. Total area planted to winter crops is expected to increase by 2% to just over 3.8 million hectares, in response to high international crop prices. However, winter crop yields are expected to decline from their high levels in 2021-22, following a return to more normal growing conditions.

South Australia has had a mixed start to the 2022–23 cropping season. The Eyre Peninsula has received decent rainfall, which has supported good planting conditions in the region. However, regions further to the east, such as the Yorke Peninsula, have received less rainfall. More favourable prices of wheat and canola relative to other crops are expected to have provided greater incentives for growers to plant these crops. Area planted to wheat is forecast to increase, driven mostly by the greater focus in northern cropping regions at the expense of barley. On the Eyre Peninsula, favourable planting conditions are expected to have facilitated greater plantings to canola. This is in contrast to the drier start in some eastern cropping regions, which have curtailed intentions to plant more canola and expected to shift areas into wheat.

A greater reliance on in-season rainfall is driving yield prospects in South Australia closer to long term averages than elsewhere. The higher importance of eastern cropping regions for plantings to barley in the state is driving its yields to be more subdued compared to other crops. A greater uptake of genetically modified (GM) canola is expected to increase average yield potentials. GM canola is less prone to damage from weeds and often produces higher yields than non-GM canola as a result.

Winter crop forecasts, South Australia, 2022–23

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>2,150</td>
<td>2.15</td>
<td>4,623</td>
<td>4</td>
<td>–2</td>
</tr>
<tr>
<td>Barley</td>
<td>820</td>
<td>2.25</td>
<td>1,845</td>
<td>–4</td>
<td>–18</td>
</tr>
<tr>
<td>Canola</td>
<td>255</td>
<td>1.55</td>
<td>395</td>
<td>11</td>
<td>–10</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted. Area based on planted crop that is harvested, fed off or failed. Percent changes are relative to last year.
Source: ABARES
Western Australia
Winter crop production in Western Australia is forecast to reach 18.3 million tonnes in 2022–23, 15% above the 10-year average to 2021–22. This forecast is 21% below the record production of last year. Seasonal conditions were favourable at the start of the 2022–23 winter cropping season across most cropping regions in Western Australia. Following early autumn rainfall, soil moisture levels were average to very much above average during the planting window.

According to the latest three-month rainfall outlook (June to August), issued by the Bureau of Meteorology on 26 May 2022, winter rainfall across Western Australian cropping regions is likely to be below average. The chance of exceeding median rainfall is less than 40%.

Area planted to winter crops in Western Australia is forecast to increase slightly to a record high of almost 8.9 million hectares (from 8.8 million hectares in 2021–22). High crop commodity prices and supportive seasonal conditions are expected to drive the area planted to winter crops to a record high. The forecast increase in area is also supported by area expansion in eastern regions. The area planted to canola and wheat is forecast to increase, mostly at the expense of barley, oats and lupins.

Winter crop yields are forecast to be above average, reflecting the favourable start to the season and excellent levels of soil moisture at the time of planting. Although winter rainfall is expected to be below average, the rainfall totals predicted for Western Australia are likely to be sufficient to achieve forecast yields.

Winter crop forecasts, Western Australia, 2022–23

<table>
<thead>
<tr>
<th>Crop</th>
<th>Area '000 ha</th>
<th>Yield t/ha</th>
<th>Production kt</th>
<th>Area change %</th>
<th>Prod. change %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>4,950</td>
<td>2.07</td>
<td>10,250</td>
<td>1</td>
<td>-20</td>
</tr>
<tr>
<td>Barley</td>
<td>1,550</td>
<td>2.77</td>
<td>4,300</td>
<td>-3</td>
<td>-22</td>
</tr>
<tr>
<td>Canola</td>
<td>1,700</td>
<td>1.53</td>
<td>2,600</td>
<td>10</td>
<td>-17</td>
</tr>
<tr>
<td>Lupins</td>
<td>300</td>
<td>1.57</td>
<td>470</td>
<td>-14</td>
<td>-37</td>
</tr>
</tbody>
</table>

Note: Yields are based on area planted. Area based on planted crop that is harvested, fed off or failed. Percent changes are relative to last year.
Source: ABARES