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Executive summary

This is a technical paper intended to supplement an earlier technical paper [1] that considered
the specific continuous sampling plan CSP-1. Two alternative plans are analysed here — CSP-2
and CSP-3, which are designed to reduce intervention on low-risk pathways. Our motivation is to
generalise the work on CSP-1 to provide efficient and practical tools that can effectively underpin
and guide robust design-decisions across a range of continuous sampling plans.

Continuous sampling plans (CSP) are operational biosecurity systems commonly implemented
to reduce the risk of exotic pest and disease introductions across the border. Such systems are
designed to reward importers who regularly supply compliant goods by reducing the frequency
of border inspections, thereby lowering costs for importers and facilitating the rapid transit of
cargo. A CSP-1 system is currently in place for Australian prawns returning from an approved
offshore facility (Pers. Comm. Animal Biosecurity DAFF), while CSP-3 is applied at the border to
screen consignments of plant-based material, such as coffee beans and dried apricots [14]. CSP-2 is
not currently implemented but Compliance-Based Intervention Schemes (CBIS) are under review.
Both CSP-2 and CSP-3 are specifically designed to provide importers with a ‘second chance’.
These plans recognise that a single, rare detection for characteristically compliant importers can
lead to major delays in the transit of goods — an increase in cost that offers little benefit for
biosecurity.

The purpose of this work, together with that in [1], is to improve the reliability of CSP design for a
range of operational systems. In contrast to earlier approaches based on mean values, simulations
or the analysis of Markov chains, we formulate simple algebraic expressions for the distributions
and statistics associated with all processes in a complete cycle of CSP-1, CSP-2 and CSP-3.
This includes expressions for variance (uncertainty), for the probability that leakage occurs, and
distributions for the volume of leakage. Results are fast, accurate and straightforward to calculate,
and they properly capture the effect of uncertainty and rare events, which are important features
in low-prevalence settings and thus highly relevant to pathway analysis. Analytical solutions also
explicitly express how inspection-sensitivity, system drivers and available controls interact and
affect results. These insights have the potential to influence biosecurity outcomes and improve the
reliability of operational systems.

Our formulations provide foundational ‘building-blocks’ for the design and analysis of a range
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of CSP systems that include both uncertainty and inspection sensitivity. Collectively, results
contribute an efficient and easily accessible approach that has not previously been available:

• a fast and accurate means of analysis, particularly when prevalence is low — which is com-
monly the case for imported and exported consignments of goods

• expressions for variance, so that it becomes straightforward to understand the influence
of system uncertainty on results, and to integrate it into CSP design principles. Current
methods often rely on mean values with variance not easily available

• equations that express precisely how CSP system controls (census numbers, monitoring
fractions and inspection-effort, which may be different for each mode) affect leakage and
uncertainty, which has important consequences for efficient and robust system design. These
inter-relationships can be difficult to determine using simulation methods

• results that take inspection sensitivity (imperfect detection) into account are provided for all
distributions and statistics. This is particularly important when designing Australian biose-
curity systems because consignments arriving at the border are sampled and inspected to
detect contamination. This is not a perfect detection process, which has direct consequences
for system design [1].

The above information is critical for decision-making under uncertainty, but can be difficult,
time-consuming and/or computationally expensive to achieve using the more routinely applied
methods.

Our analytical results are intended to replace or complement alternative methods of analysis. In
general they replace the need for simulations and long-runMarkov chain approaches. Alternatively,
they can be embedded within more complex simulations and Markov chain decision processes.
Analytical results, such as those provided here, can improve the accuracy and efficiency of these
analyses, and considerably increase the information available for management decisions.

The distributions and statistics provided in this paper have been specifically formulated to sup-
port Australian biosecurity systems. We highlight, however, that our approach has more general
relevance, with results not restricted to the example schemes of CSP-1, CSP-2 and CSP-3. It is
straightforward to apply methods and results to assess alternative arrangements of few or many
of the different CSP modes — and thus to evaluate a far broader range of alternative plans.

There are also numerous extensions to the foundational results formulated in this paper — which
are the subject of future work. Economic aspects are not directly considered, but models are con-
structed so that the integration of costs and benefits is straightforward, and uncertainty concerning
prevalence is easily included in the stochastic model. An extensive analysis of tradeoffs between
system controls and alternative CSP measures and strategies is considered beyond the scope of
this work. Different biosecurity divisions will have distinct practical constraints and priorities,
which need to be understood and taken into account. This work, however, provides practical and
appropriate tools for that purpose.

Our results, together with those in [1], contribute an efficient means of assessing and designing
robust CSP systems for biosecurity. The statistical approach proposed is more powerful than
standard simulation methods for many current applications — while, at the same time, remaining
fast, simple, accurate and accessible.
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Abstract

Australia imposes regulations on goods that arrive in the country and have the potential
to introduce exotic pests and diseases. Continuous sampling plans (CSP) are operational
biosecurity systems commonly implemented at the border to manage risk and, simultane-
ously, keep regulatory inspection costs low. Currently, CSP-1 systems are underpinned by the
results and proposed design-criteria in the classical work of Dodge (1943) [4] and CSP-2 and
CSP-3 systems are underpinned by that in Dodge and Torrey (1951) [5]. In [1] we extended
that foundational work for CSP-1 to include full distributions, uncertainty and inspection
sensitivity, and in this paper, which supplements that work, we extend the foundational work
for CSP-2 and CSP-3 in the same way. The inclusion of inspection sensitivity and uncer-
tainty are both highly relevant to Australian border operations where samples from arriving
consignments, with low but variable levels of contamination, are selected and inspected. We
provide analytical distributions and statistics for all processes, for each mode and for the full
cycle of each CSP system, including expressions for variance and leakage. Results, together
with those from [1], provide a highly efficient and easily accessible means of designing a range
of CSP schemes, increasing the information available for decisions, and having the potential
to influence biosecurity outcomes and improve the reliability of operational systems.

1 Introduction

Australia imposes regulations on goods that arrive in the country and have the potential to in-
troduce exotic pests and diseases. For some products, these regulations require inspections or
treatments which may be costly or delay delivery resulting in further costs to importers. To min-
imise costs while managing biosecurity risks, the Australian Department of Agriculture, Fisheries
and Forestry runs a Compliance-Based Intervention Scheme which can reduce inspection rates for
importers of specified products who demonstrate consistent compliance with Australia’s biosecu-
rity requirements. Compliant importers benefit from the scheme through smoother clearance of
goods at the border and reduced regulatory costs.

The Compliance-Based Intervention Scheme (CBIS) is implemented at the border, using continu-
ous sampling plans (CSP) to monitor levels of contamination. When applied to a pathway (such
as goods of a specified type from a particular country), CSP requires separate inspection histories
for each sub-pathway and reducing the proportion of consignments inspected where consistent
compliance is demonstrated — where a sub-pathway here may be any identifiable partition, such
as an importer, supplier, or a defined place where goods are produced.

The simplest continuous sampling scheme is the two stage plan, CSP-1. This scheme was originally
proposed by Dodge in 1943 [4] and it underpins a number of more recently proposed alternatives
— such as, the more complex variants CSP-2 and CSP-3 [5]. All three schemes assume a perfect
detection process. CSP-1 and CSP-3 are currently implemented in Australian biosecurity systems,
with CSP-1 used to test consignments of Australian prawns returning from offshore facilities,
and CSP-3 applied at the border on low-risk pathways to screen consignments of plant-based
material, such as coffee beans and dried apricots [14]. Both the CSP-2 and CSP-3 schemes are
specifically designed to provide importers with a ‘second chance’, or less severe consequences for
occasional non-compliance. Relative to CSP-1, these plans recognise that a single, rare detection
for a characteristically compliant importer can lead to major delays in the transit of goods, and
increased costs — interventions and costs that offer little benefit for biosecurity.

The CSP-1 system has two inspection modes — a ‘census mode’ or ‘enhanced inspection mode’, in
which 100% of arriving items (consignments of goods) are inspected until a specified number (the
clearance number) of sequential consignments pass the inspection process. Importers then transi-
tion to ‘monitoring mode’ in which a lower proportion (the monitoring fraction) of consignments
is inspected. Importers remain in monitoring mode unless contamination is detected during an
inspection, whereupon they are returned to census mode.

The CSP-2 scheme is a 3-mode system that includes an additional sampling mode in CSP-1 —
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to which importers transition when contamination is detected in monitoring mode. Compliant
importers can then return to monitoring mode without having to return to census mode. The
CSP-3 scheme is a 4-mode system that includes a further mode into CSP-2 in which all (100%) of
the next 4 (or other fixed number) arrivals are inspected — to which importers transition when
contamination is detected in monitoring mode. In this case compliant importers transition to the
second sampling mode, and then to monitoring mode without having to return to census mode.

Dodge (1943) and Dodge and Torrey (1951) (see also [7, 11]) derived analytical expressions for
certain expected values associated with CSP-1, CSP-2 and CSP-3. They assume a perfect detection
process, meaning that an inspection detects contamination when present with certainty, and the
CSP design principles they propose are underpinned by these expected values and assumptions.
The process they model is the inspection of individual units in a production line, and they do not
take model uncertainty or inspection sensitivity into account. Results from their analysis currently
guide the design of biosecurity systems implemented at the Australian border (see, for example,
[3]).

This paper is intended to supplement [1]. That paper extends and generalises the foundational
work of [4] for CSP-1, and in this paper we generalise results for the more complex CSP-2 and
CSP-3 variants. The primary purpose is to guide robust design principles for use across the range
of continuous sampling plans applied in Australian biosecurity operations. Our analysis explicitly
incorporates the effect of inspection sensitivity because, for consignments of goods arriving at the
border, sampling schemes and inspection processes are seldom perfect. We extend the work of
[4, 5] using standard statistical methods — generating functions and conditioning — to formulate
accessible, algebraic expressions for full distributions and statistics associated with the processes
and cycles of CSP-1, CSP-2 and CSP-3. This includes expressions for variance (uncertainty).
For many applications, our approach replaces the need for simulations or long-run Markov chain
methods (as in, for example, [9, 12]), and are likely to simplify Markov decision processes [15].
Results are fast, accurate and straightforward to calculate, and they properly capture the effect
of uncertainty and rare events, which are important features in low-prevalence settings and thus
highly relevant to pathway analysis. Analytical solutions also explicitly express how system drivers
and available controls interact and affect results. These insights can be difficult to achieve using
simulations, but have the potential to influence biosecurity outcomes and improve the reliability
of operational systems. An in-depth analysis of new and optimal CSP design strategies, however,
is considered beyond the scope of this work.

The paper is organised as follows. Foundational stochastic models for each mode of the CSP-2
and CSP-3 systems are constructed in Section 2, and then combined in Section 3 to formulate
stochastic models and statistics for a full cycle of each system. Analytical expressions for all
expected-value results are summarised in Section 4. We then discuss future work and provide
concluding remarks in Section 5.

2 Stochastic models for each mode of CSP-2 and CSP-3

The CSP-3 biosecurity system has four distinct modes. A schematic diagram of the system is
provided in Figure 1, where allowable transitions between the different modes are identified using
arrows. The four modes are characterised as follows:

1. Mode 1 (Census Mode or Enhanced-Inspection Mode) — 100% of all arriving con-
signments are inspected. When no contamination is detected in a fixed number (the clearance
number) of sequential inspections, the importer transitions to Mode 2 (Monitoring Mode).

2. Mode 2 (Monitoring Mode) — a fixed proportion (the monitoring fraction) of arriving
consignments is inspected. If contamination is detected, the importer transitions to Mode
3.
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3. Mode 3 — 100% of consignments are inspected. When no contamination is detected in a
fixed number (second clearance number, or tight census number) of inspections, the importer
transitions to Mode 4. If contamination is detected during this fixed number of inspections,
the importer is retuned to Mode 1 (Census Mode) and the full process begins again.

4. Mode 4 — a fixed proportion (second monitoring fraction) of consignments are inspected.
When no contamination is detected in a fixed number (third clearance number) of inspec-
tions, the importer is returned to Mode 2 (Monitoring Mode). If contamination is detected
during this fixed number of inspections, the importer is returned to Mode 1 (Census Mode)
and the full process begins again.

We assume, as is common practice [9, 14], that importers start in Census Mode (Mode 1). Compli-
ant importers typically transition to Monitoring Mode (Mode 2) and remain there. Alternatively,
relative to the CSP-1 system, CSP-3 provides a ‘second chance’ to ‘mostly-compliant’ importers,
and they may transition to Monitoring Mode and then between Modes 2, 3 and 4 without ever
returning to Census Mode (Mode 1). Non-compliant importers will be returned to Census Mode
(Mode 1) via Modes 3 and 4.

CSP-3 model Process description

Mode 1

Census Mode

100% are inspected

Transition to Mode 2 if there are no

detections in a fixed number κ1

of sequential inspections
no

detection

Mode 2

Monitoring Mode

detection

A monitoring proportion f2

is inspected

Transition to Mode 3

in the case of detection

Mode 3

detection no
detection

100% are inspected

Transition to Mode 4 if there are

no detections in a fixed number
κ3 of sequential inspections

Transition to Mode 1

in the case of detection

Mode 4

detection no
detection

A monitoring proportion f4

is inspected

Transition to Mode 2 if there are

no detections in a fixed number κ4

of sequential inspections

Transition to Mode 1

in the case of detection

Figure 1: Schematic diagram of the CSP-3 system originally proposed in [5]. The inspection
process begins in Mode 1 (Census Mode) and a full cycle is complete with a return to Mode 1
(Census Mode) — outer solid curves on the left-hand-side. The CSP-2 system excludes Mode 3,
but is otherwise identical (see Appendix Figure D.3).

The CSP-2 biosecurity system has three distinct modes — Mode 1 (Census Mode) and the two
sampling modes (Modes 2 and 4). Thus it is identical to CSP-3 with the exclusion of Mode 3.
The three modes are characterised as above and a schematic diagram of the system is provided in
Appendix Figure D.3.
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Symbol Description
E expected value
Var variance
P probability

ΦX(s) probability generating function (pgf) for generic random variable (rv) X
p probability that an arriving consignment is contaminated
κj number of sequential, inspected consignments required to transition

(j = 1, 3, 4, with κ1 the clearance number in Census Mode)
fj proportion of arriving consignments inspected (j = 2, 4)
Dκj

event that contamination is detected in at least one of κj inspections

Dκj
event that contamination is not detected in κj inspections

Aj , Ajδ rv for the number of consignment arrivals in a pass through Mode j (j = 1, 2, 3, 4)
Ij , Ijδ rv for the number of inspections in a pass through Mode j (j = 1, 2, 3, 4)
Lj, Ljδ rv for the leakage in a pass through Mode j (j = 1, 2, 3, 4)
H |Dκj

rv for the consignment-number of first-detection in a sequence of κj inspections,
conditional on detection in the sequence

δ probability that contamination is detected when present (0 < δ ≤ 1)

Table 1: Notation, random variables and parameters associated with the CSP-3 biosecurity
system (Figure 1), and the CSP2 system (Figure D.3), where subscripts 1,2,3 and 4 identify the
mode associated with parameters and random variables, subscript δ identifies expressions that
take inspection sensitivity into account, and subscript δi (i = 1, 2) identifies expressions for which
inspection sensitivity is taken into account and contributes to a specified component (i) of leakage.
Abbreviations: pgf — probability generating function; rv — random variable.

We first construct distributions, expected values and variances for a single pass through each of
the distinct modes associated with each system. A pass through a given mode is defined here
to begin when an importer transitions to that mode, and ends when they transition from that
mode. Then, assuming all importers start in Mode 1 (Census Mode) and that a full cycle includes
all transitions and inspection processes until the importer is returned to Mode 1 (Census Mode),
we also construct the distribution, expected value and variance for a complete cycle through the
CSP-2 and CSP-3 systems with all modes combined, where there may be multiple passes through
some modes (Mode 2, Mode 3 (in the case of CSP-3), and Mode 4).

2.1 Distributions and statistics for each mode — with perfect detection

Initially we assume a perfect detection process, meaning that contamination when present is
detected during an inspection with certainty. As discussed above, this assumption underpins the
foundational work of [4, 5], and also the simulation studies undertaken by ACERA/CEBRA which
apply directly to Australian biosecurity systems (see, for example, [14]). Note, however, that it is
straightforward to include an imperfect detection process (inspection sensitivity), as in [1], which is
accomplished in Section 2.2 below. This inclusion is highly relevant to current sampling strategies
implemented at the Australian border, for which detection may be imperfect.

As in [1], results are derived using probability generating functions. They offer a simple, elegant
and particularly powerful means of analysis, enabling the construction of mixed and compound
distributions that combine classes of stochastic processes, and from which it is straightforward
to determine the moments. Some basic principles are provided in [1] (Appendix A), but a more
detailed discussion can be found in most standard statistical texts — for example, [6]. We also
note that our results are intended to contribute to system-design criteria ‘over the long-run’. For
small, specific numbers of arriving consignments, state transition matrices (Markov chains) offer
a related method (see, for example, [12, 13]). Our approach, however, also formulates statistics
that are relevant to this particular application.

Let p denote the probability that a randomly selected consignment arriving at the border is con-
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taminated. Let κj , with j = 1, 3 and 4 for each of Modes 1, 3 and 4, respectively, denote a
restricted sequence length. In Mode 1 (Census Mode), κ1 is the standard clearance number (de-
noted i in [1, 4, 5]); in Mode 3, κ3 is the number of successive inspections without detection
required to transition to Mode 4; and in Mode 4, κ4 is the number of successive inspections
without detection required to transition to Mode 2 (see Figure 1). Let fj be the proportion of
arriving consignments inspected. Trivially, for Modes 1 and 3, f1 = f3 = 1 because all arriving
consignments are inspected (f1 and f3 are not explicit in our formulations). For Mode 2 (Moni-
toring Mode) and Mode 4, f2 and f4 are monitoring fractions, respectively — which may take on
different values and are explicit in our formulations.

Define Dκ as the event that there are no detections in a sequence of κ inspections, and define Dκ

as the complementary event. It then follows that, conditional on p,

P(Dκ) = (1− p)κ P(Dκ) = 1− (1 − p)κ. (1)

For each mode j, for j = 1, 2, 3 and 4, we define random variables Aj , Ij and Lj for the number
of consignment arrivals, the number of consignment inspections, and the number of consignments
that leak through the system, respectively, during a single pass through mode j.

We now construct distributions and statistics for arrivals, inspections and leakage in each mode
of Figure 1, with conditioning on p understood and noting that results for Modes 1, 2 and 4 are
relevant to CSP-2 (Figure D.3). A summary of notation, random variables and parameters used
below is provided in Table 1.

2.1.1 Mode 1 — Census Mode

In Mode 1, or Census Mode, all sequentially arriving consignments are inspected until there are
no detections in a fixed number, the clearance number κ1, of sequential inspections (Figure 1).

Full distributions and statistics for the number of arrivals in Mode 1 (random variable A1), for the
number of inspections undertaken in Mode 1 (random variable I1), and for the leakage through
Mode 1 (random variable L1), are formulated in [1]. In summary, the number of arrivals, which
is also the number of inspections, in a single pass through Mode 1 has probability generating
function

ΦA1(s) =
((1− p)s)

κ1
(

1− (1− p)s
)

1− s+ ps (1− ((1 − p)s)
κ1)

(2)

which fully defines the distribution, and from which it is straightforward to establish the expected
value and variance

E(arrivals in Mode 1) = E(A1) =
1− (1− p)κ1

p(1− p)κ1
(3)

Var(A1) =
(1− p)−2κ1 − p(2κ1 + 1)(1− p)−κ1 − (1 − p)

p2
. (4)

When detection is assumed perfect, as in this analysis, there is no leakage through Mode 1.

The above expected value agrees with that provided in [4, 5].

2.1.2 Mode 2 — Monitoring Mode

In Mode 2, Monitoring Mode, a fixed proportion, the monitoring fraction f2, of all sequentially
arriving consignments is inspected until a contaminated consignment is detected (Figure 1).

Full distributions and statistics for the number of arrivals in a single pass through Mode 2 (random
variable A2), for the associated number of inspections undertaken in Mode 2 (random variable
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I2), and for the leakage through Mode 2 (random variable L2), are formulated in [1]. In summary,
the probability generating functions are given by

ΦA2(s) =
pf2s

1− (1− pf2)s
ΦI2(s) =

ps

1− (1− p)s
ΦL2(s) =

f2

1− (1 − f2)s
(5)

with expected values and variances

E(arrivals in Mode 2) = E(A2) =
1

pf2
Var(A2) =

1− pf2

(pf2)2
(6)

E(inspections in Mode 2) = E(I2) =
1

p
Var(I2) =

1− p

p2
(7)

E(leakage through Mode 2) = E(L2) =
1− f2

f2
Var(L2) =

1− f2

f2
2

, (8)

noting that the number of inspections in a single pass through Mode 2 is independent of the mon-
itoring fraction (f2), and that leakage is independent of prevalence (p). Leakage, when detection
is assumed perfect, can occur through Mode 2 because not all consignments are inspected.

The above expected values agree with those provided in [4, 5].

2.1.3 Mode 3

In Mode 3, all arriving consignments are inspected in sequence and the total number of inspections
is restricted to κ3 (Figure 1). This mode was not considered in [1], so full details are provided
below.

The probability of no detections in κ3 sequential inspections is (see Equation (1))

P(Dκ3) = (1 − p)κ3 .

Conditional on this event, the number of arrivals, also the number of inspections, is κ3.

Alternatively, the probability of detection during this sequence of κ3 arrivals is

P(Dκ3) = 1− (1− p)κ3 .

Let A3 denote a random variable for the number of arrivals in Mode 3, which is also the number
of inspections (I3). The conditional number of arrivals has distribution defined by probability
generating function (Equation (A.1))

ΦA3|Dκ3
(s) = ΦH|Dκ3

(s) =
ps
(

1− ((1 − p)s)
κ3
)

(1− (1 − p)κ3) (1− (1− p)s)

with expected value (Equation (A.2))

E(A3|Dκ3) =
1− (1 − p)κ3 (1 + κ3p)

p
(

1− (1− p)κ3

) =
1

p
−

κ3(1 − p)κ3

1− (1− p)κ3
. (9)

This expected value agrees with that provided in [5] (h1 and h2, Eqs. 4 and 4′).

The total number of arrivals (also inspections) in Mode 3 thus has probability generating function

ΦA3(s) = sκ3P(Dκ3) + ΦH|Dκ3
(s)P(Dκ3)

=
(

(1 − p)s
)κ3

+
ps
(

1−
(

(1− p)s
)κ3
)

1− (1 − p)s
(10)
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with expected value and variance

E(A3) =
1− (1− p)κ3

p
(11)

Var(A3) =
(1 − p)

(

1− (1− p)2κ3−1 − 2pκ3(1− p)κ3 + p(1− 2pκ3)(1 − p)κ3−1
)

p2
(12)

As noted above, the number of inspections is equivalent to the number of arrivals. When detection
is perfect, there is no leakage through Mode 3.

2.1.4 Mode 4

In Mode 4, a randomly selected fraction f4 of sequentially arriving consignments are inspected,
and the total number of inspections is restricted to κ4 (Figure 1). As for Mode 3, this mode was
not considered in [1], so full details are provided below.

Consider first the case in which no consignments are detected in κ4 sequential inspections — which
occurs with probability (see Equation (1))

P(Dκ4) = (1 − p)κ4 .

Let A4 and I4 denote random variables for the total number of consignment arrivals and inspections
in Mode 4, respectively. Consignments are selected for inspection at random, with probability of
selection f4. Conditional on no detections in κ4 inspections, the number of inspections is fixed
— I4|Dκ4 = κ4 with probability 1. The associated number of arrivals up to and including the
κth
4 consignment that is inspected has a negative binomial distribution with probability mass and

generating function

P(A4|Dκ4) =

(

A4 − 1

κ4 − 1

)

fκ4
4 (1− f4)

A4−κ4 ΦA4|Dκ4
(s) =

(

f4s

1− (1 − f4)s

)κ4

(13)

and associated expected value and variance

E(A4|Dκ4) =
κ4

f4
Var(A4|Dκ4) =

(1− f4)κ4

f2
4

. (14)

Let I4 denote a random variable for the number of arriving consignments in Mode 4 that are not

inspected. Conditional on the number inspected, I4|Dκ4 = κ4, the number not inspected has a
negative binomial distribution with probability mass and generating function

P(I4|Dκ4) =

(

I4 + κ4 − 1

I4

)

fκ4
4 (1 − f4)

I4 ΦI4|Dκ4
(s) =

(

f4

1− (1− f4)s

)κ4

(15)

and associated expected value and variance

E(I4|Dκ4) =
(1− f4)κ4

f4
Var(I4|Dκ4) =

(1− f4)κ4

f2
4

. (16)

Note that, conditional on Dκ4 , the expected number of arrivals equals the sum of the expected
number of inspections and the expected number not inspected — as would be expected.

Let L4 denote a random variable for the number of consignment arrivals that leak through the
system. Since leakage can only occur when a consignment is not inspected (case of perfect de-
tection), and since each arrival has an equal chance of being contaminated (probability p), the
conditional distribution for leakage has generating function

ΦL4|Dκ4
(s) = ΦI4|Dκ4

(1− p+ ps) =

(

f4

1− (1− f4)(1 − p+ ps)

)κ4

(17)
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with associated expected value and variance

E(L4|Dκ4) =
p(1− f4)κ4

f4
Var(L4|Dκ4) =

p(1− f4)κ4(p+ (1 − p)f4)

f2
4

. (18)

Note that, conditional on Dκ4 , expected leakage is the proportion, p, of arrivals not inspected
(Equation (16)) — as would be expected.

Consider now the case in which contamination is detected within the κ4 inspections of Mode 4.
The probability that this event occurs is (from above),

P(Dκ4) = 1− P(Dκ4) = 1− (1− p)κ4 .

The probability that the first detection of contamination occurs in the hth inspection of the
sequence (h = 1, 2, . . . , κ4), and the associated probability generation function, are provided in
Appendix A.1, Equations (A.1)–(A.2), for which each value of H provides the conditional number
of consignments inspected. In this case, conditional on Dκ4 , the number of inspections can take on
a distribution of values (I4|Dκ4) ∈ {1, 2, . . . , κ4}, with probability mass and generating function

P(I4 = h|Dκ4) =
p(1− p)h−1

P(Dκ4)
ΦI4|Dκ4

(s) =
ps

P(Dκ4)

(

1− ((1− p)s)κ4

1− (1 − p)s

)

(19)

and associated expected value and variance

E(I4|Dκ4) =
1− (1− p)κ4 (κ4p+ 1)

p
(

1− (1 − p)κ4

) (20)

Var(I4|Dκ4) =
(1− p)

(

1 + (1− p)2κ4
)

− (1 − p)κ4((κ4p)
2 + 2(1− p))

p2 (1− (1− p)κ4)
2 .

Given the conditional number of inspections (I4|Dκ4), associated distributions for the number of
consignment arrivals, the number not inspected and the number that leak through the system,
can be constructed similarly to those above (results (13)–(18)). It follows that, for the conditional
number of arrivals up to and including the Ith4 inspection, the associated generating function
becomes (see result (13))

ΦA4|Dκ4
(s) =

∑

I4|Dκ4

(

f4s

1− (1− f4)s

)I4|Dκ4

P(I4|Dκ4)

= ΦI4|Dκ4

(

f4s

1− (1 − f4)s

)

=

(

pf4s
1−(1−f4)s

)

P(Dκ4)





1−
(

(1−p)f4s
1−(1−f4)s

)κ4

1−
(

(1−p)f4s
1−(1−f4)s

)



 . (21)

Similarly, conditional distributions for the number of arriving consignments that are not inspected,
and for leakage, have generating functions (respectively)

ΦI4|Dκ4
(s) = ΦI4|Dκ4

(

f4

1− (1− f4)s

)

(22)

ΦL4|Dκ4
(s) = ΦI4|Dκ4

(

f4

1− (1− f4)(1 − p+ ps)

)

(23)

where ΦI4|Dκ4
(s) is defined in (19). Associated conditional expected values, for arrivals, inspections
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and leakage, are then

E(A4|Dκ4) =
E(I4|Dκ4)

f4
=

1− (1− p)κ4 (κ4p+ 1)

pf4
(

1− (1− p)κ4

) (24)

E(I4|Dκ4) = E(I4|Dκ4) =
1− (1 − p)κ4 (κ4p+ 1)

p
(

1− (1 − p)κ4

) (25)

E(L4|Dκ4) =
p(1 − f4)E(I4|Dκ4)

f4
=

(1 − f4) (1− (1− p)κ4 (κ4p+ 1))

f4
(

1− (1− p)κ4
) . (26)

Combining the above results, distributions for the total number of arrivals, total number of in-
spections and total leakage in Mode 4, have generating functions, respectively,

ΦA4(s) = ΦA4|Dκ4
(s)P(Dκ4) + ΦA4|Dκ4

(s)P(Dκ4)

=

(

(1− p)f4s

1− (1 − f4)s

)κ4

+
pf4s

(

1−
(

(1−p)f4s
1−(1−f4)s

)κ4
)

1− (1− pf4)s

(27)

ΦI4(s) = ΦI4|Dκ4
(s)P(Dκ4) + ΦI4|Dκ4

(s)P(Dκ4)

=
(

(1 − p)s
)κ4

+
ps
(

1− ((1− p)s)
κ4
)

1− (1− p)s

(28)

ΦL4(s) = ΦL4|Dκ4
(s)P(Dκ4) + ΦL4|Dκ4

(s)P(Dκ4)

=

(

f4(1− p)

1− (1− f4)(1 − p+ ps)

)κ4

+
f4

(

1−
(

f4(1−p)
1−(1−f4)(1−p+ps)

)κ4
)

1− (1− f4)s

(29)

The expected number of arrivals, inspections and leakage for Mode 4 then simplify to, respectively,

E(A4) =
1− (1− p)κ4

pf4
(30)

E(I4) =
1− (1− p)κ4

p
(31)

E(L4) =
(1− f4) (1− (1 − p)κ4)

f4
(32)

with associated variance

Var(A4) =
1− pf4 − (1− p)2κ4 − p(2κ4 − f4)(1− p)κ4

(pf4)2
(33)

Var(I4) =
1− p− (1− p)2κ4 − p(2pκ4 − 1)(1− p)κ4 − 2pκ4(1 − p)κ4+1

p2
(34)

Var(L4) =
(1− f4)

(

1− (1− f4)(1− p)2κ4 −
(

f4 + (1 − f)2pκ4

)

(1− p)κ4
)

f2
4

. (35)

2.2 Distributions and statistics for each mode — with imperfect detec-
tion

Commonly, consignments that arrive at the Australian border are sampled, with samples tested
for contamination. This is not a perfect test. It was shown in [1] that taking test-sensitivity of
this nature into account can alter system design strategies for CSP-1 in fundamental ways. We
thus incorporate sensitivity into the above results for each mode of CSP-3 (and CSP-2). Our

12



analytical expressions for the relevant distributions and statistics enable a straightforward means
of understanding the influence of system controls on risk, and thereby offer a powerful guide for
robust CSP-2 and CSP-3 design principles when detection is imperfect.

Let δ, with 0 < δ ≤ 1, be the probability that contamination is detected when present in a
consignment inspected at the border. We exclude the case of δ = 0, although it is a trivial
special case. As above, we define Dκ as the event that there are no detections in a sequence of κ
inspections, and define Dκ as the complementary event. Taking imperfect detection into account,
it then follows that, conditional on p,

P(Dκ) = (1− δp)κ P(Dκ) = 1− (1 − δp)κ. (36)

As above, for each mode j (j = 1, 2, 3 and 4), we define random variables Ajδ, Ijδ and Ljδ for
the number of consignment arrivals, the number of consignment inspections, and the number of
consignments that leak through the system, respectively — during a single pass through mode j

with δ identifying that the inspection process may be imperfect.

2.2.1 Mode 1 — Census Mode

Distributions and statistics for Mode 1, when detection is assumed imperfect, were formulated in
[1]. Using current notation, the probability generating function, expected value and variance for
the number of arriving consignments can be expressed

ΦA1δ
(s) =

(

(1− δp)s
)κ1

(1− (1− δp)s)

1− s+ δps ((1 − δp)s)κ1
(37)

E(A1δ) =
(1 − δp)−κ1 − 1

δp
(38)

Var(A1δ) =
(1− δp)−2κ1 − δp(2κ1 + 1)(1− δp)−κ1 − (1 − δp)

(δp)2
. (39)

The number of inspections in Mode 1 is given by the number of arrivals because all arriving
consignments are inspected. When detection is imperfect, however, unlike for the perfect case,
leakage can occur because contamination may escape detection during inspection. The associated
probability generating function, expected value and variance for leakage through Mode 1 are [1]

ΦL1δ
(s) =

(

1− p
(

1− (1− δ)s
))κ1

(1− (1− δ)s)

δ
(

1− p (1− (1− δ)s)
)κ1

− (1− δ)(s− 1)
(40)

E(L1δ) =
(1− δ)

(

(1− δp)−κ1 − 1
)

δ
(41)

Var(L1δ)

=
(1− δ)

(

(1− δ)(1− δp)−2κ1 − 2(1 + (κ1 − 1)δp)(1− δ)(1 − δp)−κ1−1 + (2− δ)(1 − δp)−κ1
)

δ2
.

(42)

2.2.2 Mode 2 — Monitoring Mode

Distributions and statistics for Mode 2, when detection is assumed imperfect, were formulated in
[1]. Using current notation, the probability generating function, expected value and variance for
the number of arriving consignments can be expressed

ΦA2δ
(s) =

δpf2s

1− (1− δpf2)s
, E(A2δ) =

1

δpf2
, Var(A2δ) =

1− δpf2

(δpf2)2
. (43)
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The associated probability generating function, expected value and variance for the number of
inspected consignments are [1]

ΦI2δ (s) =
δps

1− (1 − δp)s
, E(I2δ) =

1

δp
, Var(I2δ) =

1− δp

(δp)2
. (44)

When detection is imperfect, leakage can occur when consignments are not inspected (as in the
perfect case), but also during the inspection process. The probability generating function, expected
value and variance for total leakage through Mode 2 are [1]

ΦL2δ
(s) =

δpf2(1− δpf2)

1− δpf2 −
(

1− pf2 + pf2(1 − δ)s
) (

1− δpf − p(1− f2) + p(1− f2)s
) (45)

E(L2δ) =
(1− δf2)

δf2
(46)

Var(L2δ) =
1− δf2

(δf2)2
+ 2

(

p(1− δ)(1 − f2)

δ(1− δpf2)

)

. (47)

2.2.3 Mode 3

Mode 3 was not considered in [1], so we provide full details for the inclusion of inspection sensitivity
into the results of Section 2.1.3. First note that, in Mode 3 with imperfect detection, leakage can
occur when contaminated consignments are inspected but contamination is not detected — in
contrast to the case that assumes perfect detection, where no leakage could occur.

For arrivals in Mode 3, note that δp is the probability a randomly selected consignment is both
contaminated and detected when inspected. The probability generating function, expected value
and variance for the number of arrivals with inspection sensitivity included are then (see Section
2.1.3)

ΦA3δ
(s) = sκ3P(Dκ3)+ΦH|Dκ3

(s)P(Dκ3) =
(

(1− δp)s
)κ3

+
δps

(

1−
(

(1− δp)s
)κ3
)

(1− (1− δp)s)
(48)

E(A3δ) =
1− (1 − δp)κ3

δp
(49)

Var(A3δ) =
(1− δp)

(

1− (1− δp)2κ3−1 − 2pκ3(1− δp)κ3 + δp(1− 2δpκ3)(1 − δp)κ3−1
)

(δp)2
. (50)

The number of inspections in Mode 3 is given by the number of arrivals because all arriving
consignments are inspected.

Leakage can occur in Mode 3 when an imperfect inspection fails to detect contamination that is
present. In the case contamination is detected in the sequence of inspections (event Dκ3), leakage
can only occur during the inspections before that in which it is detected. Alternatively, in the
case contamination is not detected (event Dκ3), leakage can occur during any of κ3 inspections. A
distribution for the number of arriving-and-inspected consignments in which no contamination is
detected (interim random variable A∗

3δ), can be determined from (48) above — with probability
generating function,

ΦA∗

3δ
(s) = sκ3P(Dκ3)+

ΦH|Dκ3
(s)

s
P(Dκ3) =

(

(1− δp)s
)κ3

+
δp
(

1−
(

(1− δp)s
)κ3
)

1− (1− δp)s
,

where ΦH|Dκ3
(s) is defined in Appendix A (Equation A.1). Since leakage is the number of consign-

ments inspected, contaminated and not-detected, the distribution for leakage then has probability
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generating function

ΦL3δ
(s) =

(

(1 − δp)

(

1−
(1− δ)p

1− δp
+

(

(1− δ)p

1− δp

)

s

))κ3

+
δp
(

1−
(

(1− δp)
(

1− (1−δ)p
1−δp

+
(

(1−δ)p
1−δp

)

s
))κ3

)

1− (1− δp)
(

1− (1−δ)p
1−δp

+
(

(1−δ)p
1−δp

)

s
)

=
(

1− p+ (1− δ)ps
)κ3

+
δ
(

1−
(

1− p+ (1− δ)ps
)κ3
)

1− (1− δ)s
(51)

with associated expected value and variance

E(L3δ) =
(1 − δ)

(

1− (1 − δp)κ3
)

δ
(52)

Var(L3δ) =
(1− δ)

δ2

( (

1 + (1− δ)(1− δp)κ3

)(

1− (1− δp)κ3

)

− 2δpκ3(1 − δ)(1− δp)κ3−1
)

.

Note that, when δ = 1 and perfect detection is assumed, the above results reduce to those in
Section 2.1.3 — as would be expected.

2.2.4 Mode 4

Mode 4 was not considered in [1] and we thus provide full details for the inclusion of inspection
sensitivity into the results of Section 2.1.4. First note that, in Mode 4 with imperfect detection,
leakage can occur in two distinct ways: when consignments are not inspected (as in the case with
perfect detection); and when consignments are inspected but no contamination is detected.

First consider the case in which there are no detections in κ4 sequential inspections — event Dκ4 .
The conditional number of inspections is κ4, and the conditional number of arrivals, and number of
arrivals-not-inspected have generating functions, expected values and variances as given in Section
2.1.4 — equations (13)–(16). Conditional on Dκ4 , these random variables are independent from δ.

When detection is imperfect, and conditional on Dκ4 , the first component of leakage when consign-
ments are not inspected, denoted L4δ

1
, has probability generating function (see results (17)–(18))

ΦL4δ1
|Dκ4

(s) =

(

f4

1− (1− f4)(1 − p+ ps)

)κ4

. (53)

There is a second component of leakage — denoted L4δ
2
. There are κ4 inspections with no

detections, but undertaken using an imperfect test. This component of leakage, conditional on
Dκ4 , has probability generating function (see result (51))

ΦL4δ
2
|Dκ4

(s) =

(

1−
(1 − δ)p

1− δp
+

(

(1− δ)p

1− δp

)

s

)κ4

(54)

Both components are conditional on Dκ4 (κ4 inspections), so that the total conditional leakage
has generating function

Φ(L4δ1+L4δ2
)|Dκ4

(s) =

(

f4
(

1− p+ (1 − δ)ps
)

(

1− (1− f4)(1 − p+ ps)
)

(1− δp)

)κ4

=
1

P(Dκ4)

(

f4
(

1− p+ (1− δ)ps
)

1− (1− f4)(1− p+ ps)

)κ4

. (55)

Alternatively, consider the case in which contamination is detected within the κ4 inspections of
Mode 4 — that is, conditional on event Dκ4 . Analogous to results (19)–(20) and the associated
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discussion, the conditional number of inspections has generating function, expected value and
variance

ΦI4δ |Dκ4
(s) =

δps

P(Dκ4)

(

1− ((1− δp)s)κ4

1− (1− δp)s

)

(56)

E(I4δ |Dκ4) =
1− (1 − p)κ4 (κ4δp+ 1)

δp
(

1− (1− δp)κ4

) (57)

Var(I4δ |Dκ4) =
(1− δp)

(

1 + (1 − δp)2κ4
)

− ((κ4δp)
2 − 2δp+ 2)(1− p)κ4

(δp)2 (1− (1− δp)κ4)
2 . (58)

Analogous to (21), for the conditional number of arrivals up to and including the inspection in
which contamination is detected,

ΦA4δ|Dκ4
(s) = ΦI4δ |Dκ4

(

f4s

1− (1− f4)s

)

=

(

δpf4s
1−(1−f4)s

)

P(Dκ4)





1−
(

(1−δp)f4s
1−(1−f4)s

)κ4

1−
(

(1−δp)f4s
1−(1−f4)s

)



 . (59)

Leakage, conditional on Dκ4 , can occur in two distinct ways. When detection is imperfect, the first
component of conditional leakage occurs when consignments are not inspected and has probability
generating function (analogous to (23))

ΦL4δ
1
|Dκ4

(s) = ΦI4δ|Dκ4

(

f4

1− (1− f4)(1 − p+ ps)

)

. (60)

For the second component of leakage, there is a fixed number of inspections before that in which
contamination is detected — in any of which leakage could occur because inspection is imperfect.
The distribution for this component has generating function (analogous to Mode 3 — results
(51)–(52))

ΦL4δ
2
|Dκ4

(s) =

(

ΦI4δ |Dκ4

(

1−
(1− δ)p

1− δp
+

(

(1 − δ)p

1− δp

)

s

)

)/

(

1−
(1 − δ)p

1− δp
+

(

(1− δ)p

1− δp

)

s

)

.

(61)

Both components depend on the conditional number of inspections (I4δ|Dκ4) but are conditionally
independent, so that total conditional leakage has probability generating function

Φ(L4δ1+L4δ2
)|Dκ4

(s)

=ΦI4δ|Dκ4

(

(

1−
(1− δ)p

1− δp
+
(1− δ)ps

1− δp

)(

f4

1− (1 − f4)(1 − p+ ps)

)

)/

(

1−
(1 − δ)p

1− δp
+
(1 − δ)ps

1− δp

)

=
δf4

(

1−
(

f4(1−p+(1−δ)ps)
1−(1−f4)(1−p+ps)

)κ4
)

P(Dκ4)
(

1− (1− δf4)s
) . (62)

Finally, we combine the above results to formulate distributions, expected values and variances
for the total number of arrivals, inspections and leakage in Mode 4.

Combining the conditional distributions for arrivals (results (13) and (59)), the number of arrivals
in Mode 4 has probability generating function,

ΦA4δ
(s) =

(

f4s

1− (1− f4)s

)κ4

P(Dκ4) + ΦI4δ|Dκ4

(

f4s

1− (1− f4)s

)

P(Dκ4)

=

(

(1− δp)f4s

1− (1− f4)s

)κ4

+ δpf4s





1−
(

(1−δp)f4s
1−(1−f4)s

)κ4

1− (1− δpf4)s



 (63)

16



with associated expected value and variance,

E(A4δ) =
1− (1− δp)κ4

δpf4
(64)

Var(A4δ) =
1− δpf4 + δp(f4 − 2κ4)(1 − δp)κ4 − (1− δp)2κ4

(δpf4)2
. (65)

Note that, when f = 1 and all arriving consignments are inspected, generating function (63)
reduces to (48), and when, additionally, δ = 1 and perfect detection is assumed, it reduces further
to (10) — as would be expected.

Combining the conditional distributions for inspections (see (56)), the number of inspections in
Mode 4 has probability generating function,

ΦI4δ(s) = sκ4P(Dκ4) +
δps

P(Dκ4)

(

1− ((1− δp)s)κ4

1− (1 − δp)s

)

P(Dκ4)

=
(

(1− δp)s
)κ4

+
δps

(

1−
(

(1 − δp)s
)κ4
)

1− (1 − δp)s
(66)

with associated expected value and variance

E(I4δ) =
1− (1− δp)κ4

δp
(67)

Var(I4δ) =
1− δp− 2κ4δp(1− δp)κ4+1 + δp(1− 2δpκ4)(1− δp)κ4 − (1− δp)2κ4

(δp)2
. (68)

Similarly, combining the results for conditional leakage (results (55) and (62)), the number of
consignments that leak through Mode 4 has probability generating function,

ΦL4δ
(s) =

(

Φ(L4δ
1
+Lδ

2
)|Dκ4

(s)
)

P(Dκ4) +
(

Φ(L4δ1
+Lδ2

)|Dκ4
(s)
)

P(Dκ4)

=

(

f4
(

1− p+ (1− δ)ps
)

1− (1− f4)(1 − p+ ps)

)κ4

+
δf4

(

1−
(

f4(1−p+(1−δ)ps)
1−(1−f4)(1−p+ps)

)κ4
)

1− (1− δf4)s
(69)

with associated expected value and variance

E(L4δ) =
(1− δf4) (1− (1− δp)κ4)

δf4
(70)

Var(L4δ) =
(1 − δf4)

(

(1 + (1− δf)(1− δp)κ4) (1− (1 − δp)κ4)− 2δpκ4 (1− δ(p+ (1− p)f4)) (1− δp)κ4−1
)

(δf4)2
.

(71)

Note that, when f4 = 1 and all arriving consignments are inspected, generating function (69)
reduces to (51). And when δ = 1 and perfect detection is assumed, it reduces to (27) — as would
be expected.

3 Stochastic model for a full cycle of CSP-2 and CSP-3

The above results for each mode can be combined to provide simple algebraic expressions for
the distributions, expected values and variances associated with the total number of arrivals,
inspections and leakage — over a full cycle of the CSP-2 and CSP-3 systems. As discussed, the
biosecurity process is assumed to start in Mode 1 (Census Mode), and a full cycle is considered
complete when an importer is returned to Mode 1 after transitioning through Mode 2. We highlight
that, exactly one pass throughMode 1 occurs in a cycle of CSP-2 or CSP-3 and, before transitioning
back to Mode 1, many passes through Modes 2, 3 (in the case of CSP-3) and 4 could occur.
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3.1 Expected number of arrivals, inspections and leakage in a cycle

We first construct expressions for expected values, where the formulation makes use of conditional
independence between mode-level distributions — although they can also be derived directly from
the generating functions formulated below (Section 3.2).

Let Z denote a generic random variable for the ‘total number’ (of arrivals, of inspections or of
leakage in a cycle), where random variablesM1, M2, M3 and M4 denote generic contributions from
Modes 1–4, respectively, and where, for mode j, with j = 1, 2, 3, 4, and for perfect and imperfect
detection, respectively,

P(Dκj
) = (1− p)κj , P(Dκj

) = (1 − δp)κj .

For CSP-2, the expected value can be expressed (see Appendix B)

E(Z
(CSP2)

) = E(M1) + E(M2) + P(Dκ4)E(M4|Dκ4)

+ P(Dκ4)
[

κ4 + E(M2) + P(Dκ4)E(M4|Dκ4)

+P(Dκ4)
[

κ4 + E(M2) + P(Dκ4)E(M4|Dκ4)

+P(Dκ4)
[

· · · · · ·
]]]

= E(M1) + E(M2)
(

1 + P(Dκ4) +
(

P(Dκ4)
)2

+
(

P(Dκ4)
)3

+ · · ·
)

+ E(M4)

(

1 + P(Dκ4) +
(

P(Dκ4)
)2

+
(

P(Dκ4)
)3

+ · · ·

)

= E(M1) +
E(M2) + E(M4)

1− P(Dκ4)
. (72)

The total expected number of arrivals, inspections and leakage in a complete cycle of CSP-2,
can then be determined by simply substituting Aj , Ij or Lj for Mj in expression (72), where
expressions for all expected values (E(Aj), E(Ij) or E(Lj)) are provided in Section 4.

As an example, for the total expected number of arrivals in a complete cycle of CSP-2 (notated

E(A
(CSP2)

)), substituting from results (83)) in Section 4 and assuming δ = 1 (perfect detection),
f2 = f4 = f and κ4 = κ, function (72) reduces to

E(A
(CSP2)

) =
1− (1 − p)κ1

p(1− p)κ1
+

2− (1 − p)κ

pf (1− (1− p)κ)
. (73)

Similarly, under the same assumptions and substitution from results (84) and (85) in Section 4,
the expected number of inspections and leakage, respectively, reduce to

E(I
(CSP2)

) =
1

p

(

1

(1− p)κ1
+

1

1− (1 − p)κ

)

(74)

E(L
(CSP2)

) =
(1− f) (2− (1 − p)κ)

f (1− (1− p)κ)
. (75)
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For CSP-3, the expected value can be expressed

E(Z
(CSP3)

) = E(M1) + E(M2) + P(Dκ3)E(M3|Dκ3)

+ P(Dκ3)
[

κ3 + P(Dκ4)E(M4|Dκ4) + P(Dκ4)
[

κ4 + E(M2) + P(Dκ3)E(M3|Dκ3)

+P(Dκ3)
[

κ3 + P(Dκ4)E(M4|Dκ4) + P(Dκ4)
[

κ4 + E(M2) + P(Dκ3)E(M3|Dκ3)

+P(Dκ3)
[

· · · · · ·
]]]]]

= E(M1) + E(M2)

(

1 + P(Dκ3)P(Dκ4) +
(

P(Dκ3)P(Dκ4)
)2

+
(

P(Dκ3)P(Dκ4)
)3

+ · · ·

)

+ E(M3)

(

1 + P(Dκ3)P(Dκ4) +
(

P(Dκ3)P(Dκ4)
)2

+
(

P(Dκ3)P(Dκ4)
)3

+ · · ·

)

+ E(M4)

(

P(Dκ3) +
(

P(Dκ3)
)2

P(Dκ4) +
(

P(Dκ3)
)3 (

P(Dκ4)
)2

+ · · ·

)

= E(M1) +
E(M2) + E(M3) + E(M4)P(Dκ3)

1− P(Dκ3)P(Dκ4)
. (76)

As above, the total expected number of arrivals, inspections and leakage in a complete cycle of
CSP-3, can then be determined by simply substituting E(Aj), E(Ij) or E(Lj) (Section 4) for E(Mj)
in expression (76).

As an example, for the total expected number of arrivals in a complete cycle of CSP-3 (notated

E(A
(CSP3)

)), substituting from results (83) in Section 4 and assuming δ = 1 (perfect detection),
f2 = f4 = f and κ3 = κ4 = κ, function (76) reduces to

E(A
(CSP3)

) =
1− (1 − p)κ1

p(1− p)κ1
+

(1 + f) + (1− f)(1− p)κ − (1− p)2κ

pf (1− (1 − p)2κ)
. (77)

Similarly, under the same assumptions and substitution from results (84) and (85) in Section 4 ,
the expected number of inspections and leakage, respectively, reduce to

E(I
(CSP3)

) =
1

p

(

1

(1− p)κ1
+

1

1− (1− p)2κ

)

(78)

E(L
(CSP3)

) =
(1− f)

(

1 + (1− p)κ − (1− p)2κ
)

f (1− (1− p)2κ)
. (79)

See Appendix B for a comparison between results (72) and (76), expected value ratios, and equiv-
alent CSP-2 and CSP-3 expected-values provided in [5].

3.2 Distributions for the number of arrivals, inspections and leakage in
a cycle

As above, distributions for the total expected number of arrivals, inspections and leakage in a full
cycle of CSP2 and CSP-3 can be constructed. Using the above notation, the ‘generic’ probability
generating functions for the distributions can be expressed (Appendix C)

Φ
(CSP2)

Z (s) = ΦM1(s)

(

ΦM2(s)Ψ4a

1− ΦM2(s)Ψ4b

)

CSP-2 (80a)

Φ
(CSP3)

Z (s) = ΦM1(s)

(

ΦM2(s)ΨM3a +ΦM2(s)ΨM3bΨM4a

1− ΦM2(s)ΨM3bΨM4b

)

CSP-3 (80b)
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where

ΨM3a = ΦM3|Dκ3
(s)P(Dκ3)

ΨM3b = ΦM3|Dκ3
(s)P(Dκ3)

ΨM4a = ΦM4|Dκ4
(s)P(Dκ4)

ΨM4b = ΦM4|Dκ4
(s)P(Dκ4).

(81)

As an example, for the total number of consignment arrivals in a complete cycle of CSP-3 (notated

Φ
(CSP3)

A (s)), substituting from Section 2.1 and assuming δ = 1 (perfect detection), f2 = f4 = f and
κ3 = κ4 = κ, function (80b) reduces to

Φ
(CSP3)

A (s) =

(

((1−p)s)κ1(1−(1−p)s)
1−s+ps(1−((1−p)s)κ1)

)

fp2s2
(

1−((1−p)s)κ

1−(1−p)s +
f((1−p)s)κ(1−( fs(1−p)

1−s(1−f) )
κ
)

1−(1−fp)s

)

1− s
(

(1− pf) + pf
(

s2f(1−p)2

1−(1−f)s

)κ) . (82)

The expected value and variance are straightforward to determine from this function (Appendix
C). These results can appear complicated, but they are straightforward to construct from sim-
ple component expressions, they simplify in many cases, and the associated statistics are easily
calculated.

Finally, results (72), (76) and (80) do not depend on a perfect-detection process and hold for
distributions and statistics that take inspection sensitivity into account. Expressions for the
relevant component expected-values are summarised in Section 4, and the associated distributions
are provided in Section 2.2. For each mode, they can be substituted for Mj in results (72), (76)
and (80). As discussed above, we reiterate that when imperfect detection is assumed, P(Dκj

) =
(1− δp)κj .

4 Summary of expected-value results

The above formulations for expected values in a single pass through each mode, and in a single
cycle through CSP-2 and CSP-3, are summarised below. As above, a single pass through a mode
begins when an importer transitions to the mode, and ends when the importer transitions from
that mode. And a single CSP-2 or CSP-3 cycle is assumed to begin when an importer enters Mode
1, and ends when the importer returns to Mode 1 after transitioning through other modes.

Mode-level: In the case detection is assumed perfect (δ = 1)

E(A1) =
(1− p)−κ1 − 1

p
expected arrivals in Mode 1 (eq. (3)) (83a)

E(A2) =
1

pf2
expected arrivals in Mode 2 (eq. (6)) (83b)

E(A3) =
1− (1− p)κ3

p
expected arrivals in Mode 3 (eq. (11)) (83c)

E(A4) =
1− (1− p)κ4

pf4
expected arrivals in Mode 4 (eq. (30)) (83d)
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E(I1) =
(1 − p)−κ1 − 1

p
expected inspections in Mode 1 (eq. (3)) (84a)

E(I2) =
1

p
expected inspections in Mode 2 (eq. (7)) (84b)

E(I3) =
1− (1 − p)κ3

p
expected inspections in Mode 3 (eq. (11)) (84c)

E(I4) =
1− (1 − p)κ4

p
expected inspections in Mode 4 (eq. (31)) (84d)

E(L1) = 0 expected leakage through Mode 1 (85a)

E(L2) =
1− f2

f2
expected leakage through Mode 2 (eq. (8)) (85b)

E(L3) = 0 expected leakage through Mode 3 (85c)

E(L4) =
(1 − f4) (1− (1− p)κ4)

f4
expected leakage through Mode 4 (eq. (32)) (85d)

Mode-level: In the case detection is assumed perfect or imperfect (0 < δ ≤ 1)

E(A1δ) =
(1 − δp)−κ1 − 1

δp
expected arrivals in Mode 1 (eq. (38)) (86a)

E(A2δ) =
1

δpf2
expected arrivals in Mode 2 (eq. (43)) (86b)

E(A3δ) =
1− (1 − δp)κ3

δp
expected arrivals in Mode 3 (eq. (48)) (86c)

E(A4δ) =
1− (1 − δp)κ4

δpf4
expected arrivals in Mode 4 (eq. (64)) (86d)

E(I1δ) =
(1− δp)−κ1 − 1

δp
expected inspections in Mode 1 (eq. (38)) (87a)

E(I2δ) =
1

δp
expected inspections in Mode 2 (eq. (44)) (87b)

E(I3δ) =
1− (1− δp)κ3

δp
expected inspections in Mode 3 (eq. (48)) (87c)

E(I4δ) =
1− (1− δp)κ4

δp
expected inspections in Mode 4 (eq. (67)) (87d)

E(L1δ) =
(1− δ)

(

(1− δp)−κ1 − 1
)

δ
expected leakage through Mode 1 (eq. (41)) (88a)

E(L2δ) =
(1− δf2)

δf2
expected leakage through Mode 2 (eq. (41)) (88b)

E(L3δ) =
(1− δ)

(

1− (1− δp)κ3
)

δ
expected leakage through Mode 3 (eq. (52)) (88c)

E(L4δ) =
(1− δf4) (1− (1− δp)κ4)

δf4
expected leakage through Mode 4 (eq. (70)) (88d)

Expressions for all associated variances, and full distributions, are provided in Section 2.
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Cycle-level: In the case detection is assumed perfect or imperfect (0 < δ ≤ 1)

E(Z
(CSP2)

) = E(M1) +
E(M2) + E(M4)

1− (1− δp)κ4
expected number in CSP-2 (eq.(72))

(89a)

E(Z
(CSP3)

) = E(M1) +
E(M2) + E(M3) + E(M4)(1− δp)κ3

1− (1− δp)κ3+κ4
expected number in CSP-3 (eq.(76))

(89b)

Setting δ = 1 for the case of perfect detection and 0 < δ < 1 otherwise (imperfect detection):

• For the expected number of arrivals in a cycle through CSP-2 and CSP-3, expressions for
E(Ajδ) (results (83) or (86)) can be substituted for E(Mj) (j = 1, 2, 3, 4) in (89a-b)

• For the expected number of inspections in a cycle through CSP-2 and CSP-3, expressions
for E(Ijδ) (results (84) or (87)) can be substituted for E(Mj) (j = 1, 2, 3, 4) in (89a-b)

• For expected leakage in a cycle through CSP-2 and CSP-3, expressions for E(Ljδ) (results
(85) or (88)) can be substituted for E(Mj) (j = 1, 2, 3, 4) in (89a-b).

Expressions for all associated distributions, from which variances are easily derived, are provided
in the Section 3.2.

5 Conclusion

In this paper, we formulate simple algebraic expressions for all distributions, expected values and
variances for the number of arrivals, the number of inspections and the leakage, with inspection
sensitivity explicitly included — for each mode and for a full cycle of CSP-2 and CSP-3. The
inclusion of inspection sensitivity is highly relevant to Australian biosecurity systems because the
inspection process implemented at the border is, typically, imperfect. Results provide a simple
and accurate means of determining expected values and variances relevant for all prevalence levels
— including low prevalence. They explicitly express how system controls in each mode influence
biosecurity risk, and thereby contribute an easily accessible and powerful guide for CSP design
and analysis.

As discussed in [1], there are numerous natural extensions to the analysis presented here: a
distribution for prevalence could be added to incorporate the nature of uncertainty surrounding this
unknown value; clearance numbers, monitoring fractions and inspection-effort for an acceptable
volume of leakage could be determined under a variety of conditions; and inference could be
incorporated to update the risk associated with particular importers or pathways (see also [2]).
Further, economic considerations could be integrated to design the CSP system by, for example,
incorporating a trade-off between costs and associated risks (see, for example, [8, 15]). These
extensions are straightforward using the formulation provided.

Biosecurity measures and ‘optimal’ system design, using concepts such as AOQ and AOQL (av-
erage outgoing quality proposed in [4]) and the potential effect of inspection sensitivity on system
design are not explored in this work — although aspects were considered in [1]. We suggest,
however, that inspection sensitivity could alter CSP design decisions in fundamental ways (see
[1]), and the inclusion of system and parameter uncertainty could have similar effects. A further
aspect relevant to effective CSP design is the probability that leakage is prevented, and the volume
of leakage given that it occurs. Relevant formulations are straightforward to determine from the
distributions provided in this work (as in [1]).

Low contamination prevalence is typical of many pathways for arriving or departing consignments
of goods at the border. Future work is planned to consider the performance of CSP-1, CSP-2 and
CSP-3 biosecurity systems in these low-prevalence settings; the effect of variation in prevalence
across a collection of arriving consignments; and the inclusion of the imperfect detection process
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associated with group-sampling techniques, which are commonly applied at the border to reduce
costs.

Results from this paper are intended to complement those formulated in [1], thereby extending the
relevance of that work to a broad range of CSP systems implemented at the Australian border.
This paper does not propose or assess alternative CSP design principles or optimal strategies — it
develops statistical results appropriate for that assessment. Results provide a collection of efficient
and practical tools that have not previously been available, but which are purpose-built to support
current and alternative Australian biosecurity systems. The statistical approach chosen is more
powerful than standard simulation methods for many applications, while remaining simple, fast,
accurate and easily accessible.
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Appendix

A Previously published supporting results

We provide a distribution (and its associated probability mass, expected value and variance) for the
inspection-number, in a sequence of at most κ inspections, in which contamination is first detected
— conditional on detection within this sequence of inspections. Full details of the formulation are
given in [1].

Let H denote a random variable for the inspection-number, and let κ denote the sequence length,
with p and Dκ as defined in the main text. The associated conditional probability mass and
generating function for the distribution are, respectively,

P(H=h|Dκ) =
p(1− p)h−1

1− (1− p)κ
ΦH|Dκ

(s) =
ps (1− ((1− p)s)

κ
)

(1− (1− p)κ) (1− (1− p)s)
(A.1)

with expected value and variance

E(H |Dκ) =
1− (1− p)κ (1 + κp)

p
(

1− (1− p)κ
) (A.2)

Var(H |Dκ) =
(1− p)

(

1 + (1− p)2κ
)

− (1− p)κ
(

(κp)2 + 2(1− p)
)

(

p
(

1− (1 − p)κ
))2 . (A.3)

The expected value agrees with that provided in [4, 5].

B Comparison with CSP results reported in Dodge and
Torrey (1951)

The foundational work for CSP-2 and CSP-3 is published by Dodge and Torrey (1951) [5]. We
compare results in this paper with the expected values assuming perfect detection that are reported
in that work. Dodge and Torrey [5] do not provide expressions for all expected values, and they
do not consider full distributions and variance, or incorporate imperfect detection in their results.

For CSP-2, they assume two sampling modes — Modes 1, 2 and 4 of the main text — and they
provide algebraic expressions for the expected number of inspections in a full cycle of their CSP-2
system. For their results they assume that the monitoring fraction is the same for both sampling
modes (i.e., f = f2 = f4).

From Section 3 of the main text, a general expression for the expected number of arrivals, inspec-
tions or leakage for the CSP-2 model can be expressed

E(Z) = E(M1) +
E(M2) + E(M4)

1− P(Dκ4)
. (B.1)
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The total number of inspections in sampling mode (Modes 2 and 4), over a full cycle of CSP-2 (as
implemented in [5]) can then be determined using results (84) of the main text,

E(M1) = E(I1) =
1− (1− p)κ1

p(1− p)κ1
, E(M2) = E(I2) =

1

p
, E(M4) = E(I4) =

1− (1− p)κ4

p
.

Substituting into (B.1), it then follows that the expected number of inspections in a full cycle,
with all modes combined and assuming perfect detection, is given by

E(I) = E(I1) +
E(I2) + E(I4)

1− P(Dκ4)
=

1− (1− p)κ1

p(1− p)κ1
+

1
p
+ 1−(1−p)κ4

p

1− (1− p)κ4

=
1− (1− p)κ1

p(1− p)κ1
+

2− (1 − p)κ4

p (1− (1− p)κ4)

=
1

p

(

1

(1− p)κ1
+

1

1− (1− p)κ

)

,

where, in the first two lines, the first term is the expected number of inspections in Mode 1, through
which there is at most one pass, and the second term is for the expected number of inspections in
the two sampling modes combined, through which there may be numerous passes.

This expected value takes all possible transitions between different modes of CSP-2 into account,
over one full cycle (before a return to Mode 1) — and our result agrees with the expected value
provided in [5]. Our expression above has been determined from the distributions we formulated
in the main text, but reduces to Eqs. (9) and (10) in [5] — noting that the expected number of
inspections in Mode 1 can be expressed

E(I1) =
1− (1− p)κ1

(1− p)κ1

(

1

p
−

κ1(1− p)κ1

1− (1− p)κ1

)

+ κ1

=
1− (1− p)κ1 − κ1p(1− p)κ1

p(1− p)κ1
+ κ1

=
1− (1− p)κ1

p(1− p)κ1
− κ1 + κ1

=
1− (1− p)κ1

p(1− p)κ1
, (B.2)

— where the first expression appears in [5], and the latter in result (84) of the main text.

Dodge and Torrey [5] also provide an an expression for AOQ associated with the CSP-3 model
discussed in the main text (eq. 12 in [5]). Our algebraic simplification of the expression (not
provided), as well as our numerical results and simulations, do not agree exactly with their ex-
pression — although they are close. However, result (76) in the main text does agree, exactly,
with simulated results, as do each of the component distributions (Modes 1, 2, 3 and 4). We
suggest that there is a ‘typo’ in their expression (eq. 12 in [5]) because all expected-values that
they provide, as well as their expressions for the CSP-2 system, agree exactly with those derived
using our expressions.

C Distribution for the number of arrivals, inspections and

leakage in a cycle

We formulate full distributions for a cycle of CSP-2 and CSP-3, with that for CSP-1 provided in
[1].

Expected values and variances are then straightforward to derive from these probability generating
functions (C.3)–(C.5) (see below) in the usual way — that is (see standard statistical texts — for
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example, [6])

E(Z) = Φ′
Z(s)

∣

∣

∣

s=1

, Var(Z) = Φ′′
Z(s)

∣

∣

∣

s=1

+ E(Z)− (E(Z))
2
, (C.1)

where Φ′
Z(s) denotes the derivative with respect to s, which is evaluated at s = 1.

For reasons of parsimony we simplify the notation and set

ΨM3a = ΦM3|Dκ3
(s)P(Dκ3)

ΨM3b = ΦM3|Dκ3
(s)P(Dκ3)

ΨM4a = ΦM4|Dκ4
(s)P(Dκ4)

ΨM4b = ΦM4|Dκ4
(s)P(Dκ4).

(C.2)

CSP-2

CSP-2, as described in [5], excludes Mode 3 from the CSP-3 system (see Figure D.3). It follows
that, for a single cycle of CSP-2 there is exactly one pass through Mode 1. There is at least one
pass through Modes 2 and 4, and there may be many passes through both Modes 2 and 4. We
construct a generating function for the ‘generic’ random variable Z (number of arrivals, inspections
or leakage), for a full cycle, simple explicit expressions for the components of which have been
formulated in the main text (Section 3.2):

ΦZ(s) = ΦM1(s)ΦM2(s)
(

P(Dκ4)ΦM4|Dκ4
(s) + P(Dκ4)ΦM4|Dκ4

(s)

×ΦM2(s)
(

P(Dκ4)ΦM4|Dκ4
(s) + P(Dκ4)ΦM4|Dκ4

(s)ΦM2 (s) (. . .)
))

= ΦM1(s)
(

ΦM2(s)Ψ4a +Φ2
M2

(s)Ψ4bΨ4a +Φ3
M2

(s)Ψ2
4bΨ4a +Φ4

M2
(s)Ψ3

4bΨ4a + · · ·
)

= ΦM1(s)ΦM2(s)Ψ4a

(

1 + ΦM2(s)Ψ4b + (ΦM2(s)Ψ4b)
2 + . . .
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Note that, applying (C.1), the expected value is

E(Z) =
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(C.4)

— which agrees with result (72) (and (B.1)).

CSP-3

For a full cycle of CSP-3, as described in [5] (see Figure 1), there is exactly one pass through Mode
1. There is at least one pass through Modes 2 and 3; there may be no passes through Mode 4; or
there may be many passes through all of Modes 2, 3 and 4. We construct a generating function
for ‘generic’ random variable Z (number of arrivals, inspections or leakage), for a full cycle, simple
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explicit expressions for the components of which have been formulated in the main text (Section
3.2):

ΦZ(s) = ΦM1(s)ΦM2 (s)
(
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. (C.5)

The expected value and variance can then be found in the usual way (see (C.1)).

D Schematic diagrams for distinct continuous sampling plans

We provide schematic diagrams for the three distinct sampling plans considered.

A schematic diagram of CSP-1, as originally proposed in [4], is provided in Figures D.1 and D.2.
The former provides details of the inner processes in each of the two modes, and the latter is in
the same format as alternative schemes and provided for purposes of comparison. In CSP-1 there
is a single sampling mode — Mode 2.

A schematic diagram of CSP-2, as originally proposed in [5], is provided in Figure D.3. Relative
to CSP-1, this scheme has an extra sampling mode — Mode 4. Thus it has two distinct sampling
modes — Modes 2 and 4. Details for the inner processes of Modes 1 and 2 are identical to those
of CSP-1 (Figure D.1).

A schematic diagram of CSP-3, as originally proposed in [5], is provided in Figure 1 of the main
text and is replicated here (Figure D.4). Relative to CSP-2, this scheme has the same two sampling
modes with an extra 100%–inspection mode included — Mode 3. Details for the inner processes
of Modes 1 and 2 are identical to those of CSP-1 (Figure D.1).
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CSP-1 model
Mode 1 Mode 2

Census mode Monitoring mode

Importing
agency

test 1st

consignment

fail pass

test selected
consignment

fail pass

test 2nd

consignment
test selected
consignment

fail pass fail pass

test κth

1

consignment

test selected
consignment

fail pass fail pass

transition to
monitoring

mode

On-going selection and inspection of

a sample in monitoring mode until

contamination is detected

Figure D.1: Schematic diagram of the CSP-1 system originally proposed in [4]. In Mode
1 (Census Mode, left-hand-column), where all arriving consignments are inspected, a detection
(‘fail’) initiates a new block (grey box) of inspections (dotted curves); a sequence of κ1 inspections
with no detections leads to a transition to Mode 2 or Monitoring Mode (solid curve); in Mode
2 (right-hand-column), where a monitoring-fraction f2 of arriving consignments are selected and
inspected, a detection (‘fail’) returns the importer to Mode 1 or Census Mode (dashed curves). A
full CSP-1 cycle is complete when an importer who started in Mode 1 (Census Mode), transitions
to Mode 2 (Monitoring Mode) and is subsequently returned to Mode 1. Mode 1 (Census Mode)
is also referred to as ‘Enhanced Inspection Mode’ [14].
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CSP-1 model Process description

Mode 1

Census Mode

100% are inspected

Transition to Mode 2 if there are no

detections in a fixed number κ1

of sequential inspections
no

detection

Mode 2

Monitoring Mode

A monitoring proportion f2

is inspected

Transition to Mode 1

in the case of detection

detection

Figure D.2: Schematic diagram of the CSP-1 system originally proposed in [4]. The inspection
process begins in Mode 1 (Census Mode) and a full cycle is complete with a return to Mode 1
(Census Mode) — outer solid curve on the left-hand-side. Mode 1 (Census Mode) is also referred
to as ‘Enhanced Inspection Mode’ by CEBRA [14].

CSP-2 model Process description

Mode 1

Census Mode

100% are inspected

Transition to Mode 2 if there are no

detections in a fixed number κ1

of sequential inspections
no

detection

Mode 2

Monitoring Mode

detection

A monitoring proportion f2

is inspected

Transition to Mode 4

in the case of detection

Mode 4

detection no
detection

A monitoring proportion f4

is inspected

Transition to Mode 2 if there are

no detections in a fixed number κ4

of sequential inspections

Transition to Mode 1

in the case of detection

Figure D.3: Schematic diagram of the CSP-2 system originally proposed in [5]. The inspection
process begins in Mode 1 (Census Mode) and a full cycle is complete with a return to Mode 1
(Census Mode) — outer solid curve on the left-hand-side. Mode 1 (Census Mode) is also referred
to as ‘Enhanced Inspection Mode’ by CEBRA [14], and Mode 4 is also referred to as ‘Alert’ Mode
by CEBRA [10].
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CSP-3 model Process description

Mode 1

Census Mode

100% are inspected

Transition to Mode 2 if there are no

detections in a fixed number κ1

of sequential inspections
no

detection

Mode 2

Monitoring Mode

detection

A monitoring proportion f2

is inspected

Transition to Mode 3

in the case of detection

Mode 3

detection no
detection

100% are inspected

Transition to Mode 4 if there are

no detections in a fixed number
κ3 of sequential inspections

Transition to Mode 1

in the case of detection

Mode 4

detection no
detection

A monitoring proportion f4

is inspected

Transition to Mode 2 if there are

no detections in a fixed number κ4

of sequential inspections

Transition to Mode 1

in the case of detection

Figure D.4: Schematic diagram of the CSP-3 system originally proposed in [5]. The inspection
process begins in Mode 1 (Census Mode) and a full cycle is complete with a return to Mode 1
(Census Mode) — outer solid curves on the left-hand-side. Mode 1 (Census Mode) is also referred
to as ‘Enhanced Inspection Mode’ by CEBRA [14], Mode 3 is also referred to as ‘Limbo’ Mode
by CEBRA [10] and as ‘Tight’ Mode in DAFF (Animal Biosecurity), and Mode 4 is also referred
to as ‘Alert’ Mode by CEBRA [10].
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